Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

(1-Bromonaphthalen-2-yl)acetonitrile

Andria D. Harris, Amy D. Baucom, Jessica L. Brown, Daniel S. Jones* and Craig A. Ogle*

Department of Chemistry, The University of North Carolina at Charlotte, 9201 University City Blvd, Charlotte, NC 28223, USA
Correspondence e-mail: djones@uncc.edu, cogle@uncc.edu
Received 29 December 2007; accepted 9 June 2008
Key indicators: single-crystal X-ray study; $T=295 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$; R factor $=0.025 ; w R$ factor $=0.063$; data-to-parameter ratio $=13.6$.

The title compound, $\mathrm{C}_{12} \mathrm{H}_{8} \mathrm{BrN}$, was prepared as a starting material for a Suzuki cross-coupling reaction with a pinacol ester. The torsion angle about the ring-methylene $\mathrm{C}-\mathrm{C}$ bond is $30.7(3)^{\circ}$, such that the N atom is displaced by 1.174 (4) \AA from the plane of the naphthalene ring system.

Related literature

A search of the Cambridge Structural Database [Version 5.29 (Allen, 2002); CONQUEST (Bruno et al., 2002)] yielded one comparable structure, (4-bromonaphthalen-2-yl)acetonitrile (Refcode BAGTEJ; Duthie et al., 2001).

Experimental

Crystal data
$\mathrm{C}_{12} \mathrm{H}_{8} \mathrm{BrN}$
Monoclinic, $P 2_{1} / n$
$M_{r}=246.1$

$$
\begin{aligned}
& b=7.2379(8) \AA \\
& c=11.8901(15) \AA \\
& \beta=102.538(10)^{\circ} \\
& V=954.31(19) \AA^{3} \\
& Z=4
\end{aligned}
$$

Data collection

Enraf-Nonius CAD-4
diffractometer

Absorption correction: none
6502 measured reflections
1729 independent reflections

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.025$
$w R\left(F^{2}\right)=0.063$
$S=1.01$
1729 reflections
$\mathrm{Cu} K \alpha$ radiation
$\mu=5.47 \mathrm{~mm}^{-1}$
$T=295(2) \mathrm{K}$
$0.5 \times 0.2 \times 0.2 \mathrm{~mm}$

1558 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.031$
3 standard reflections every 75 reflections intensity decay: 2%

127 parameters

H -atom parameters constrained
$\Delta \rho_{\text {max }}=0.35 \mathrm{e}^{\AA^{-3}}$
$\Delta \rho_{\min }=-0.51 \mathrm{e}^{-3}$

Data collection: CAD-4 EXPRESS (Enraf-Nonius, 1994); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms \& Wocadlo, 1995); program(s) used to solve structure: DIRDIF (Beurskens et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

This work was supported in part by funds provided by the University of North Carolina at Charlotte.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FL2183).

References

Allen, F. H. (2002). Acta Cryst. B58, 380-388.
Beurskens, P. T., Beurskens, G., de Gelder, R., Garciía-Granda, S., Gould, R. O., Israel, R. \& Smits, J. M. M. (1999). The DIRDIF99 Program System. Technical Report of the Crystallography Laboratory, University of Nijmegen, The Netherlands.
Bruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. \& Taylor, R. (2002). Acta Cryst. B58, 389-397.
Duthie, A., Scammells, P. J., Katsifis, A. \& Tiekink, E. R. T. (2001). Z. Kristallogr. New Cryst. Struct. 216, 531-532.
Enraf-Nonius (1994). CAD-4 EXPRESS. Enraf-Nonius, Delft, The Netherlands.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Harms, K. \& Wocadlo, S. (1995). XCAD4. University of Marburg, Germany. Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supplementary materials

(1-Bromonaphthalen-2-yl)acetonitrile

A. D. Harris, A. D. Baucom, J. L. Brown, D. S. Jones and C. A. Ogle

Comment

The title compound (Fig.1) was prepared as a starting material for a Suzuki cross coupling reaction with a pinacol ester. The $\mathrm{C} 11-\mathrm{C} 12-\mathrm{N}$ angle is $178.4(3)^{\circ}$, and the plane of that grouping makes an angle of $42.5(1)^{\circ}$ with the plane of the naphthalene ring, while the N atom is displaced 1.174 (4) \AA from the plane of the naphthalene ring. As shown in Figs. 2 and 3 , the molecules form alternating layers when viewed edge-on and form columns when viewed along the b axis.

A search of the Cambridge Structural Database [Version 5.29; (Allen, 2002); CONQUEST, Version 1.10 (Bruno et al., 2002)] yielded one comparable structure, (4-bromonapthalen-2-yl)acetonitrile (Refcode BAGTEJ; Duthie et al., 2001). In that structure the acetonitrile $\mathrm{C}-\mathrm{C}-\mathrm{N}$ angle was 179.3°, and the plane of that grouping made an angle of 23.1° with the plane of the naphthalene ring. The N atom was displaced $0.287 \AA$ from the plane of the naphthalene ring.

Experimental

Synthesis of 1-bromo-2-methylnaphthalene (II) (Fig. 4). A solution of 2-methylnaphthalene (I) in acetic acid was stirred while an equivalent amount of Br_{2} in acetic acid was added dropwise at a rate that allowed the bromine color to dissipate between drops. Upon completion of addition the mixture was allowed to stir for 1 h at which time the entire mixture was poured into water. The organic phase was separated and washed repeatedly with water to remove the acetic acid. The product was dried with $\mathrm{K}_{2} \mathrm{CO}_{3}$ and used in the next step without further purification.

Synthesis of 1-bromo-2-(bromomethyl)naphthalene (III). N-Bromosuccinimide (1 eq) and benzoylperoxide (0.01 eq) were added to a solution of (II) dissolved in CCl_{4}. The reaction was then heated to reflux and the reaction progress was monitored with $\mathrm{GC} / \mathrm{MS}$. The reaction seemed to stall out at 3 h , and an additional portion of benzoylperoxide (0.01 eq) was added and allowed to reflux for an additional 3 h . The succinimide byproduct was removed by filtration from the cooled mixture. The CCl_{4} was removed and the product (III) was recrystallized from isooctane.

Synthesis of the title compound (IV). KCN (1.1 eq) was dissolved in DMSO with stirring. III (1.0 eq) was added along with additional DMSO to the stirred reaction mixture. A slight exotherm was observed, and the homogeneous mixture was allowed to stir overnight. The reaction was judged to be complete by GC/MS analysis. The reaction mixture was poured into water with stirring. The product precipitated upon addition to water. After filtering, the product was dried on a watch glass, and crystals for the diffraction study were obtained by recrystallization from a 2:1 mixture of 1,2-dimethoxyethane and ethanol.

Refinement

H atoms were constrained using a riding model. The methylene $\mathrm{C}-\mathrm{H}$ bond lengths were fixed at $0.97 \AA$, using an idealized tetrahedral geometry, with $U_{\text {iso }}(\mathrm{H})=1.2 \mathrm{U}_{\text {eq. }}(\mathrm{C})$. The aromatic $\mathrm{C}-\mathrm{H}$ bond lengths were fixed at $0.93 \AA$, with $U_{\text {iso }}(\mathrm{H})$ $=1.2 \mathrm{U}_{\text {eq. }}$ (C).

supplementary materials

Figures

Fig. 1. View of the title compound (IV) showing 50% probability displacement ellipsoids.

Fig. 2. Diagram showing how the molecules of (IV) pack in alternating layers when viewed edge-on.

Fig. 3. Diagram showing how the molecules of (IV) form columns when viewed along the b axis.

Fig. 4. The formation of the title compound.

(1-Bromonaphthalen-2-yl)acetonitrile

Crystal data

$\mathrm{C}_{12} \mathrm{H}_{8} \mathrm{Br}_{1} \mathrm{~N}_{1}$
$M_{r}=246.1$
Monoclinic, $P 2_{1} / n$
Hall symbol: -P 2yn
$a=11.3599$ (13) \AA
$b=7.2379$ (8) \AA
$c=11.8901(15) \AA$
$\beta=102.538(10)^{\circ}$
$V=954.31(19) \AA^{3}$
$Z=4$

$$
\begin{aligned}
& F_{000}=488 \\
& D_{\mathrm{x}}=1.713 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \mathrm{Cu} K \alpha \text { radiation } \\
& \lambda=1.54184 \AA \\
& \text { Cell parameters from } 22 \text { reflections } \\
& \theta=8.6-16.7^{\circ} \\
& \mu=5.47 \mathrm{~mm}^{-1} \\
& T=295(2) \mathrm{K} \\
& \text { Prism, yellow } \\
& 0.5 \times 0.2 \times 0.2 \mathrm{~mm}
\end{aligned}
$$

Data collection

Enraf-Nonius CAD-4
diffractometer
Nonprofiled $\theta / 2 \theta$ scans
Absorption correction: none 6502 measured reflections
1729 independent reflections
1558 reflections with $I>2 \sigma(I)$
$\theta_{\text {min }}=4.9^{\circ}$
$R_{\text {int }}=0.031$
$\theta_{\text {max }}=67.5^{\circ}$
$h=-13 \rightarrow 13$
$k=-8 \rightarrow 8$
$l=-14 \rightarrow 14$
3 standard reflections
every 75 reflections
intensity decay: 2%

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.025$
$w R\left(F^{2}\right)=0.063$
$S=1.01$
1729 reflections
127 parameters

H -atom parameters constrained

$$
w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0276 P)^{2}+0.7384 P\right]
$$

where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}<0.001$
$\Delta \rho_{\max }=0.35$ e \AA^{-3}
$\Delta \rho_{\text {min }}=-0.51 \mathrm{e} \AA^{-3}$
Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two 1.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving 1.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\AA^{2})

	x	y	z	$U_{\text {iso }}{ }^{*} / U_{\text {eq }}$
Br	$0.22261(2)$	$0.12936(4)$	$0.490726(19)$	$0.04829(11)$
N	$-0.2239(2)$	$-0.0251(4)$	$0.2063(2)$	$0.0621(6)$
C 2	$0.0751(2)$	$0.1301(3)$	$0.2652(2)$	$0.0364(5)$
C 9	$0.29263(19)$	$0.1292(3)$	$0.2734(2)$	$0.0339(4)$
C 1	$0.1920(2)$	$0.1289(3)$	$0.32691(18)$	$0.0334(4)$
C 10	$0.2689(2)$	$0.1334(3)$	$0.1517(2)$	$0.0353(5)$
C 4	$0.1481(2)$	$0.1373(3)$	$0.0887(2)$	$0.0416(5)$
H4	0.132	0.1414	0.0087	0.05^{*}
C8	$0.4149(2)$	$0.1250(3)$	$0.3346(2)$	$0.0421(5)$
H8	0.4327	0.1222	0.4147	0.051^{*}
C12	$-0.1394(2)$	$0.0450(3)$	$0.2562(2)$	$0.0434(5)$
C11	$-0.0312(2)$	$0.1321(4)$	$0.3232(2)$	$0.0485(6)$
H11A	-0.0082	0.0694	0.3968	0.058^{*}
H11B	-0.0498	0.2593	0.3384	0.058^{*}
C3	$0.0552(2)$	$0.1353(3)$	$0.1439(2)$	$0.0416(5)$
H3	-0.0235	0.1373	0.1007	0.05^{*}
C5	$0.3660(2)$	$0.1332(3)$	$0.0944(2)$	$0.0435(5)$
H5	0.3506	0.1351	0.0143	0.052^{*}
C7	$0.5062(2)$	$0.1252(3)$	$0.2767(2)$	$0.0488(6)$
H7	0.5857	0.1219	0.3181	0.059^{*}
C6	$0.4826(2)$	$0.1302(3)$	$0.1566(2)$	$0.0484(6)$
H6	0.5462	0.1314	0.1187	0.058^{*}

Atomic displacement parameters $\left(A^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Br	$0.05003(18)$	$0.06614(18)$	$0.03112(16)$	$-0.00544(11)$	$0.01412(12)$	$-0.00341(10)$
N	$0.0373(12)$	$0.0871(17)$	$0.0637(15)$	$-0.0030(12)$	$0.0149(11)$	$-0.0019(13)$
C 2	$0.0366(11)$	$0.0376(10)$	$0.0387(12)$	$-0.0030(8)$	$0.0163(10)$	$-0.0017(9)$
C 9	$0.0362(11)$	$0.0297(9)$	$0.0391(11)$	$-0.0019(8)$	$0.0152(10)$	$-0.0016(8)$
C 1	$0.0398(11)$	$0.0328(10)$	$0.0302(10)$	$-0.0025(8)$	$0.0133(9)$	$-0.0015(8)$
C 10	$0.0393(11)$	$0.0323(10)$	$0.0383(12)$	$-0.0023(8)$	$0.0170(10)$	$0.0000(8)$
C 4	$0.0449(13)$	$0.0510(13)$	$0.0311(11)$	$-0.0025(10)$	$0.0132(10)$	$0.0018(9)$
C 8	$0.0389(12)$	$0.0459(12)$	$0.0421(13)$	$-0.0006(9)$	$0.0099(10)$	$0.0001(10)$
C 12	$0.0353(12)$	$0.0531(13)$	$0.0465(13)$	$0.0060(11)$	$0.0195(11)$	$0.0062(11)$
C 11	$0.0406(13)$	$0.0632(15)$	$0.0476(14)$	$-0.0070(11)$	$0.0222(12)$	$-0.0079(11)$
C 3	$0.0346(11)$	$0.0530(13)$	$0.0380(12)$	$-0.0023(10)$	$0.0092(10)$	$0.0011(10)$
C 5	$0.0496(14)$	$0.0430(12)$	$0.0451(13)$	$-0.0010(10)$	$0.0260(12)$	$0.0002(10)$
C 7	$0.0336(12)$	$0.0531(13)$	$0.0609(16)$	$0.0003(10)$	$0.0130(12)$	$-0.0011(11)$
C 6	$0.0413(13)$	$0.0485(13)$	$0.0636(17)$	$-0.0002(10)$	$0.0292(13)$	$0.0008(11)$

Geometric parameters (\AA, ${ }^{\circ}$)

$\mathrm{Br}-\mathrm{C} 1$	$1.903(2)$
$\mathrm{N}-\mathrm{C} 12$	$1.132(3)$
$\mathrm{C} 2-\mathrm{C} 1$	$1.371(3)$
$\mathrm{C} 2-\mathrm{C} 3$	$1.410(3)$
$\mathrm{C} 2-\mathrm{C} 11$	$1.515(3)$
$\mathrm{C} 9-\mathrm{C} 10$	$1.413(3)$
$\mathrm{C} 9-\mathrm{C} 1$	$1.424(3)$
$\mathrm{C} 9-\mathrm{C} 8$	$1.422(3)$
$\mathrm{C} 10-\mathrm{C} 5$	$1.417(3)$
$\mathrm{C} 10-\mathrm{C} 4$	$1.413(3)$
$\mathrm{C} 4-\mathrm{C} 3$	$1.358(3)$
$\mathrm{C} 4-\mathrm{H} 4$	0.93
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	$117.95(19)$
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 11$	$122.1(2)$
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{C} 11$	$119.9(2)$
$\mathrm{C} 10-\mathrm{C} 9-\mathrm{C} 1$	$117.7(2)$
$\mathrm{C} 10-\mathrm{C} 9-\mathrm{C} 8$	$118.25(19)$
$\mathrm{C} 1-\mathrm{C} 9-\mathrm{C} 8$	$124.1(2)$
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 9$	$122.6(2)$
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{Br}$	$119.22(15)$
$\mathrm{C} 9-\mathrm{C} 1-\mathrm{Br}$	$118.16(17)$
$\mathrm{C} 5-\mathrm{C} 10-\mathrm{C} 9$	$119.7(2)$
$\mathrm{C} 5-\mathrm{C} 10-\mathrm{C} 4$	$120.9(2)$
$\mathrm{C} 9-\mathrm{C} 10-\mathrm{C} 4$	$119.36(19)$
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 10$	$120.7(2)$
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{H} 4$	119.6
$\mathrm{C} 10-\mathrm{C} 4-\mathrm{H} 4$	119.6

$\mathrm{C} 8-\mathrm{C} 7$	$1.364(3)$
$\mathrm{C} 8-\mathrm{H} 8$	0.93
$\mathrm{C} 12-\mathrm{C} 11$	$1.455(4)$
$\mathrm{C} 11-\mathrm{H} 11 \mathrm{~A}$	0.97
$\mathrm{C} 11-\mathrm{H} 11 \mathrm{~B}$	0.97
$\mathrm{C} 3-\mathrm{H} 3$	0.93
C5-C6	$1.370(4)$
C5-H5	0.93
C7-C6	$1.396(4)$
C7-H7	0.93
C6-H6	0.93

C12-C11-C2 114.1 (2)

C12-C11-H11A 108.7
$\mathrm{C} 2-\mathrm{C} 11-\mathrm{H} 11 \mathrm{~A} \quad 108.7$
C12-C11—H11B 108.7
C2-C11—H11B 108.7
$\mathrm{H} 11 \mathrm{~A}-\mathrm{C} 11-\mathrm{H} 11 \mathrm{~B} \quad 107.6$
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{C} 2 \quad 121.7$ (2)
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{H} 3 \quad 119.1$
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{H} 3 \quad 119.1$
C6-C5-C10 120.2 (2)
C6-C5-H5 119.9
$\mathrm{C} 10-\mathrm{C} 5-\mathrm{H} 5 \quad 119.9$
C8-C7-C6 121.2 (2)
$\mathrm{C} 8-\mathrm{C} 7-\mathrm{H} 7 \quad 119.4$
C6-C7-H7 119.4

sup-4

supplementary materials

$\mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 9$	$120.5(2)$	$\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 7$	$120.1(2)$
$\mathrm{C} 7-\mathrm{C} 8-\mathrm{H} 8$	119.8	$\mathrm{C} 5-\mathrm{C} 6-\mathrm{H} 6$	120
$\mathrm{C} 9-\mathrm{C} 8-\mathrm{H} 8$	119.8	$\mathrm{C} 7-\mathrm{C} 6-\mathrm{H} 6$	120
$\mathrm{~N}-\mathrm{C} 12-\mathrm{C} 11$	$178.4(3)$		

supplementary materials

Fig. 1

Fig. 2

supplementary materials

Fig. 3

supplementary materials

Fig. 4

